ĐỀ KIỂM TRA GIỮA HKII - MÔN TOÁN 7
ĐỀ KIỂM TRA GIỮA HKII - MÔN TOÁN 7
1. Tỉ lệ thức, dãy tỉ số bằng nhau, Đại lượng tỉ lệ nghịch.
2. Thu thập, phân loại và biểu diễn dữ liệu
5. Một số hình thức khuyến mãi trong kinh doanh
6. Trường hợp bằng nhau cạnh huyền – góc nhọn và trung điểm của đoạn thẳng
9. Đường vuông góc và đường xiên
1. What do you usually do with your friends in your free time?
(Bạn thường làm gì với bạn bè trong thời gian rảnh?)
I usually go shopping, play team sports, cook at home with my family, share favourite books with friends.
(Tôi thường đi mua sắm, chơi các môn thể thao đồng đội, nấu ăn ở nhà với gia đình, chia sẻ những cuốn sách yêu thích với bạn bè.)
Bài 1 trang 59 SGK Toán 6 tập 2 - Cánh Diều
Theo https://danso.org/dan-so-the-gioi, vào ngày 11/02/2020, dân số thế giới là 7 762 912 358 người. Sử dụng số thập phân để viết dân số thế giới theo đơn vị tính: tỉ người. Sau đó làm tròn số thập phân đó đến:
Để làm tròn một số thập phân đến một hàng nào đó, ta làm như sau:
- Nếu chữ số đứng ngay bên phải hàng làm tròn nhỏ hơn 5 thì ta thay lần lượt các chữ số đứng bên phải hàng làm tròn bởi chữ số 0.
- Nếu chữ số đứng ngay bên phải hàng làm tròn lớn hơn hoặc bằng 5 thì ta thay lần lượt các chữ số đứng bên phải hàng làm tròn bởi chữ số 0 rồi cộng thêm 1 vào chữ số của hàng làm tròn.
Sau đó bỏ đi những chữ số 0 ở tận cùng bên phải phần thập phân.
\(7{\rm{ }}762{\rm{ }}912{\rm{ }}358 = 7,762{\rm{ }}912{\rm{ }}358\) (tỉ người)
a) \(7,762{\rm{ }}912{\rm{ }}358 \approx 7,8\) tỉ người
b) \(7,762{\rm{ }}912{\rm{ }}358 \approx 7,76\) tỉ người.
Bài 2 trang 60 SGK Toán 6 tập 2 - Cánh Diều
Một bánh xe hình tròn có đường kính là 700 mm chuyển động trên một đường thẳng từ điểm A đến điểm B sau 875 vòng. Quãng đường AB dài khoảng bao nhiêu ki-lô-mét (làm tròn kết quả đến hàng phần mười và lấy \(\pi = 3,14\))?
- Tính chu vi bánh xe: Chu vi hình tròn = đường kính. 3,14
=> Quãng đường AB = Chu vi bánh xe . 875
Quan sát hình vẽ, ta thấy khi bánh xe quay được 1 vòng thì quãng đường bánh xe đi được chính là chu vi của đường tròn bánh xe.
Vì bánh xe hình tròn chuyển động trên một đường thẳng từ điểm A đến điểm B sau 875 vòng nên độ dài của quãng đường AB là: 2198.875 = 1 923 250 (mm).
Để làm tròn 1,92325 đến hàng phần mười ta làm như sau:
- Do chữ số hàng phần trăm là số 2 < 5 nên trong số 1,92325 ta giữ nguyên chữ số 9 ở hàng phần mười (hàng làm tròn):
- Với số nhận được ở trên, thay lần lượt các chữ số đứng bên phải hàng làm tròn bởi chữ số 0 rồi bỏ đi những chữ số 0 ở tận cùng bên phải phần thập phân:
Vậy quãng đường AB dài khoảng 1,9 km.
Bài 3 trang 60 SGK Toán 6 tập 2 - Cánh Diều
Ước lượng kết quả của các tổng sau theo mẫu:
Mẫu: 119 + 52 = 120 + 50 = 170;
185,91 + 14,1 = 185,9 + 14,1 = 200.
Làm tròn rồi tính các tổng đã cho.
\(\begin{array}{*{20}{l}}{a){\rm{ }}221 + 38 \approx 220 + 40 = 260\;}\\{b){\rm{ }}6,19 + 3,82 \approx 6,2 + 3,8 = 10}\\{c){\rm{ }}11,131 + 9,868 \approx 11,1+ 9,9 = 21}\\{d){\rm{ }}31,189 + 27,811 \approx 31,2 + 27,8 = 59}\end{array}\)
Bài 4 trang 60 SGK Toán 6 tập 2 - Cánh Diều
Ước lượng kết quả của các tích sau theo mẫu:
Mẫu: 81.49 = 80.50 = 4 000; 8,19.4,95 = 8.5 = 40.
Làm tròn và tính các tích theo mẫu.
c) 19,87 . 30,106 ≈ 20.30 = 600;
d) (-10,11) . (-8,92) ≈ (-10) . (-9) = 90
Đề thi giữa kì 2 Toán 7 Cánh diều năm 2023 - 2024 bao gồm 8 đề kiểm tra có đáp án giải chi tiết kèm theo ma trận, bảng đặc tả đề thi. Thông qua đề kiểm tra giữa kì 2 Toán 7 Cánh diều giúp các bạn có thêm nhiều tư liệu học tập, ôn luyện đề tốt hơn.
TOP 8 Đề kiểm tra học kì 2 Toán 7 Cánh diều được biên soạn bám sát nội dung chương trình trong sách giáo khoa tập 2. Thông qua đề thi Toán 7 giữa học kì 2 sẽ giúp quý thầy cô giáo xây dựng đề kiểm tra theo chuẩn kiến thức và kỹ năng, nhanh chóng biên soạn đề thi cho các em học sinh của mình. Ngoài ra các bạn xem thêm: đề thi giữa kì 2 môn Lịch sử - Địa lí 7 Cánh diều, đề thi giữa kì 2 môn Ngữ văn 7 Cánh diều, đề thi giữa kì 2 KHTN 7 Cánh diều.
a) Bảng thống kê này chưa hợp lí:
Số học sinh lớp 7A1 tham gia ngoại khoá (42 học sinh) vượt quá sĩ số của lớp (39 học sinh);
Tổng số học sinh tham gia ngoại khoá của các lớp là:
42 + 10 + 15 + 26 = 93 (học sinh).
Tổng số học sinh tham gia ngoại khoá của các lớp (93 học sinh) lớn hơn số học sinh ở phần tổng (60 học sinh) nên bảng thống kê này chưa hợp lí.
b) Bảng thống kê này chưa hợp lí vì tỉ lệ phần trăm kết quả kiểm tra thường xuyên không thể vượt quá 100% (cột tỉ lệ phần trăm kiểm tra thường xuyên môn Toán đợt 1 dưới 3,5 điểm là 200% vượt quá 100%) và tổng các loại phải đúng bằng 100%.
Tập hợp các kết quả có thể xảy ra là: {1; 2; 3; … ; 47; 48}. Có 48 kết quả.
Trong các số trên, số chính phương là: 1; 4; 9; 16; 25; 36.
Khi đó, xác suất của biến cố đã cho là: 6 48 = 1 8 648=18 .
Vậy xác suất của biến cố “Số xuất hiện trên thẻ được rút ra là số chính phương” bằng 1 8 18 .
a. Xét tam giác ABD vuông tại A và tam giác BDE vuông tại E có:
\(\widehat{ABD}=\widehat{DBE}={{30}^{0}}\)(BD là phân giác góc B)
\(\Rightarrow \Delta ADB=\Delta BDE\)(cạnh huyền – góc nhọn)
b. Ta có: \(\Delta ADB=\Delta BDE\Rightarrow AB=BE\)
Xét tam giác ABE có AB = BE, \(\widehat{B}={{60}^{0}}\)
Vậy tam giác ABE là tam giác đều.
c. Ta có tam giác ABE là tam giác đều
\(\Rightarrow \widehat{BAE}=\widehat{ABE}={{60}^{0}}\)
Mặt khác \(\widehat{BAC}={{90}^{0}}\)
\(\Rightarrow \widehat{EAC}=\widehat{BAC}-\widehat{BAE}={{90}^{0}}-{{60}^{0}}={{30}^{0}}\) (1)
\(\begin{align} & \widehat{ABC}+\widehat{BCA}+\widehat{BAC}={{180}^{0}} \\ & \Rightarrow \widehat{BCA}={{180}^{0}}-\widehat{ABC}-\widehat{BAC} \\ & \Rightarrow \widehat{BCA}={{180}^{0}}-{{60}^{0}}-{{90}^{0}} \\ & \Rightarrow \widehat{BCA}={{30}^{0}}\text{ }\left( 2 \right) \\ \end{align}\)
Từ (1) và (2) ta có tam giác AEC cân tại E
Từ (*) và (**) suy ra BC = BE + EC = 5 + 5 = 10cm
a) Số lượng gạo trắng được xuất khẩu năm 2020là:
6,5 . 45,2% = 2,938 (triệu tấn).
Số lượng gạo nếp được xuất khẩu năm 2020là:
Vậy số lượng gạo trắng và số lượng gạo nếp được xuất khẩu năm 2020 lần lượt là 2,938 triệu tấn và 0,585 triệu tấn.
b) Số lượng gạo thơm được xuất khẩu là:
6,5 . 26,8% = 1,742 (triệu tấn).
Tỉ số phần trăm số lượng gạo trắng xuất khẩu nhiều hơn số lượng gạo thơm là:
2,938 – 1,742 = 1,196 (triệu tấn).
Vậy số lượng gạo trắng xuất khẩu nhiều hơn số lượng gạo thơm 1,196 triệu tấn.
I. PHẦN TRẮC NGHIỆM KHÁCH QUAN (3,0 điểm)
Hãy khoanh tròn vào phương án đúng duy nhất trong mỗi câu dưới đây.
Câu 1. Thảo ghi chiều cao (cm) của các bạn học sinh tổ 1 lớp 7A được ghi lại trong bảng sau:
A. Giai đoạn 2000 – 2006;B. Các năm: 2000; 2005; 2010; 2016;C. Thủy sản;D. Sản lượng khai thác thủy sản (nghìn tấn).
Câu 3. Biểu đồ đoạn thẳng trong hình dưới đây biểu diễn điểm bài ôn luyện môn Khoa học của bạn Khanh từ tuần 1 đến tuần 5.
Hãy cho biết điểm 7 của bạn Khanh đạt vào tuần nào?
A. Tuần 1 và tuần 2;B. Tuần 1 và tuần 4;C. Tuần 2 và tuần 4;D. Tuần 2 và tuần 5.
Câu 4. Biểu đồ hình quạt tròn biểu diễn kết quả thống kê (tính theo tỉ số phần trăm) chọn loại thực phẩm yêu thích trong 5 loại: Bánh rán, Nước ép, Bánh, Trà, Cà phê của học sinh khối 7 ở trường THCS Thanh Đa. Mỗi học sinh chỉ được chọn một loại thực phẩm khi được hỏi ý kiến như hình bên dưới.
Hỏi tổng số học sinh chọn món Trà và Bánh rán chiếm bao nhiêu phần trăm?
Câu 5. Khi tung một đồng xu cân đối một lần và quan sát mặt xuất hiện của nó. Số kết quả có thể xảy ra đối với mặt xuất hiện của đồng xu là:
Câu 6. Xác suất của biến cố trong trò chơi có 10 kết quả có thể xảy ra là 2525. Số kết quả thuận lợi của biến cố đó là
Câu 7. Cho ∆ABC vuông tại A. Khi đó
A. \(\hat{B}\) + \(\hat{C}\)=90°;B. \(\hat{B}\) + \(\hat{C}\) =180°;C. \(\hat{B}\) + \(\hat{C}\)=100°;D. \(\hat{B}\) + \(\hat{C}\)==60°.
Câu 8. Cho tam giác ABC. Bất đẳng thức nào dưới đây sai?
A. AB + AC > BC;B. BC – AB < AC;C. BC + AB > AC;D. BC – AC > AB
Câu 9. Cho tam giác MNP có \(\hat{M}\) = 80° và \(\hat{N}\) =50°. So sánh độ dài NP và MP là:
B. NP = MP;C. NP < MP;D. Không đủ điều kiện để so sánh.
Câu 10. Cho tam giác ABC và DEH trong hình dưới đây.
A. ∆ABC = ∆DEH;B. ∆ABC = ∆HDE;C. ∆ABC = ∆EDH;D. ∆ABC = ∆HED.
Câu 10. Cho tam giác ABC và tam giác MNP có AB = MP, AC = NM, BC = NP. Khẳng định nào dưới đây đúng?
A. ∆ABC = ∆MNP;B.∆ABC = ∆NMP;C.∆ABC = ∆PMN;D.∆ABC = ∆MPN.
A. Nếu hai cạnh và góc xen giữa của tam giác này lần lượt bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau;
B. Nếu hai cạnh và một góc của tam giác này bằng hai cạnh và một góc của tam giác kia thì hai tam giác đó bằng nhau;
C. Nếu hai cạnh của tam giác này bằng hai cạnh của tam giác kia thì hai tam giác đó bằng nhau;
D. Nếu một góc của tam giác này bằng một góc của tam giác kia thì hai tam giác đó bằng nhau.
Câu 12. Cho tam giác ABC có M là trung điểm cạnh BC. Kẻ tia Ax đi qua M. Qua B, C lần lượt kẻ các đường thẳng vuông góc với Ax, cắt Ax tại H và K. So sánh BH và CK.
Bài 1. (2,0 điểm) Xét tính hợp lí của các dữ liệu trong mỗi bảng thống kê sau:
Số học sinh tham gia ngoại khóa
Kết quả kiểm tra thường xuyên môn Toán đợt 1
Bài 2. (1,0 điểm) Một hộp có 48 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1; 2; …; 48. Hai thẻ khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên một thẻ trong hộp. Tính xác suất của biến cố “Số xuất hiện trên thẻ được rút ra là số chính phương”.
Cho tam giác ABC vuông tại A, \(\widehat{B}={{60}^{0}}\), AB = 5cm. Tia phân giác góc B cắt AC tại D. Từ D kẻ đường thẳng vuông góc với BC tại E.
a. Chứng minh rằng \(\Delta ADB=\Delta BDE\)
b. Chứng minh tam giác AEB là tam giác đều.
Bài 4. (1,0 điểm) Năm 2020, Việt Nam xuất khẩu (ước đạt) 6,5 triệu tấn gạo, thu được 3,07 tỉ đô la Mỹ. Biểu đồ hình quạt tròn ở bên dưới biểu diễn khối lượng xuất khẩu của mỗi loại gạo trong tổng số gạo xuất khẩu (tính theo tỉ số phần trăm).
Dựa vào thông tin thu thập từ biểu đồ trên để trả lời các câu hỏi sau:
a)Tính số lượng gạo trắng và số lượng gạo nếp được xuất khẩu năm 2020?
b) Số lượng gạo trắng xuất khẩu nhiều hơn số lượng gạo thơm là bao nhiêu?